Main Article Content

Abstract

This study assessed the performance of response surface methodology (RSM) and artificial neural network (ANN) in modelling the transesterification of luffa oil using acid activated waste marble catalyst. The waste marble was activated with 0.5 molar sulphuric acid at 600 oC for 4 hours and was characterized by SEM, FT-IR, XRD, XRF, and BET; the characterization proved that the catalyst was successfully activated. The experiments were conducted at a catalyst dosage (1-5 wt. %), temperature (40-80 oC), methanol-oil ratio (4:1-12:1), time (1-3 hours), and agitation speed of (100- 500 rpm) with output as biodiesel yield. ANN was assessed using three back-propagation (BP) procedures, each comprising five neurons (input layer), one (output layer) and ten (hidden layer). The Levenberg Marquardt technique offered the most accurate prediction for luffa oil transesterification. The models were developed based on experimental and algorithm simulations and designs. The models' performance was assessed using the R2 and MSE. Regarding R2 and MSE, the ANN model (R2=9.9921E-1, MSE=0.06311) has a superior predictive capacity in forecasting the process than the RSM (R2=0.9885, MSE=0.86). At a catalyst concentration (3wt %), time (2 hours), temperature (60 oC), agitation speed (100 rpm) and methanol-oil ratio (12:1), the experimental (92.57 %), RSM predicted (94.0487 %) and ANN predicted (91.1768 %) biodiesel yield showed an agreement between the experimental and predicted values. The findings via physicochemical analysis, FT-IR, and GC-MS confirm that the biodiesel was within ASTM specifications. 

Keywords

Luffa Oil Transesterification Biodiesel Optimization

Article Details

References

  1. Abdul Mutalib, A. A., Ibrahim, M. L., Matmin, J., Kassim, M. F., Mastuli, M. S., Taufiq-Yap, Y. H., Shohaimi, N. A. M., Islam, A., Tan, Y. H., and Kaus, N. H. M. (2020). SiO2-Rich Sugar cane bagasse ash catalyst for transesterification of palm oil. Bioenergy Research, 13(3), pp. 986–997. https://doi.org/10.1007/s12155-020-10119-6
  2. Adewuyi, A., Oderinde, R. A., Rao, B. V. S. K., Prasad, R. B. N., and Anjaneyulu, B. (2012). Blighia unijugata and luffa cylindrica seed oils: Renewable sources of energy for sustainable development in rural Africa. BioEnergy Research, 5, pp. 713-718.
  3. Ajala, E. O., Aberuagba, F., Olaniyan, A. M., and Onifade, K. R. (2015). Optimization of solvent extraction of shea butter (Vitellaria paradoxa ) using response surface methodology and its characterization. J Food Sci Technol, 23(7), pp. 457-467. https://doi.org/10.1007/s13197-015-2033-7
  4. Balajii, M., and Niju, S. (2020). Banana peduncle – A green and renewable heterogeneous base catalyst for biodiesel production from Ceiba pentandra oil. Renewable Energy, 146, pp. 2255–2269. https://doi.org/10.1016/j.renene.2019.08.062
  5. Bargole, S. S., Singh, P. K., George, S., and Saharan, V. K. (2021). Valorisation of low fatty acid content waste cooking oil into biodiesel through transesterification using a basic heterogeneous calcium-based catalyst. Biomass and Bioenergy, 146, pp. 105-124. https://doi.org/10.1016/j.biombioe.2021.105984.
  6. Bedir, Ö., and Doğan, T. H. (2021). Use of sugar industry waste catalyst for biodiesel production. Fuel, 286, 14595. https://doi.org/10.1016/j.fuel.2020.119476.
  7. Betiku, E., Odude, V. O., Ishola, N. B., Bamimore, A., Osunleke, A. S., and Okeleye, A. A. (2016). Predictive capability evaluation of RSM, ANFIS and ANN: A case of reduction of high free fatty acid of palm kernel oil via esterification process. Energy Conversion and Management, 124, pp. 219–230. https://doi.org/10.1016/j.enconman.2016.07.030
  8. Chinweuba, A. J. (2017). Potential industrial applications of luffa cylindrica seed oil. Journal of Scientific and Engineering Research, , 4(3), pp. 66-68
  9. Dahdah, E., Estephane, J., Taleb, Y., El Khoury, B., El Nakat, J., and Aouad, S. (2021). The role of rehydration in enhancing the basic properties of Mg–Al hydrotalcites for biodiesel production. Sustainable Chemistry and Pharmacy, 22, 100487.
  10. Esonye, C., Dominic, O., and Uwaoma, A. (2019). Characterization and oxidation modeling of oils from Prunus amygdalus , Dyacrodes edulis and Chrysophyllum albidium. Industrial Crops and Products, 128(October 2018), pp. 298–307. https://doi.org/10.1016/j.indcrop.2018.11.029
  11. Foroutan, R., Mohammadi, R., and Ramavandi, B. (2021). Waste glass catalyst for biodiesel production from waste chicken fat: Optimization by RSM and ANNs and toxicity assessment. Fuel, 291(December 2020), pp. 218-227. https://doi.org/10.1016/j.fuel.2021.120151
  12. Foroutan, R., Peighambardoust, S. J., Mohammadi, R., Ramavandi, B., and Boffito, D. C. (2021). One-pot transesterification of non-edible Moringa oleifera oil over a MgO/K2CO3/HAp catalyst derived from poultry skeletal waste. Environmental Technology and Innovation, 21, pp. 234-251. https://doi.org/10.1016/j.eti.2020.101250
  13. Ibeto, C. N., Okoye, C. O. B., and Ofoefule, A. U. (2012). Comparative study of the physicochemical characterization of some oils as potential feedstock for biodiesel production. International Scholarly Research Notices, 12, pp. 1-10.
  14. Idris, N. A., Lau, H. L. N., Wafti, N. S. A., Mustaffa, N. K., and Loh, S. K. (2021). Glycerolysis of Palm Fatty Acid Distillate (PFAD) as Biodiesel Feedstock Using Heterogeneous Catalyst. Waste and Biomass Valorization, 12(2), pp. 735–744. https://doi.org/10.1007/s12649-020-00995-6
  15. Karmakar, B., Samanta, S., and Halder, G. (2020). Delonix regia heterogeneous catalyzed two-step biodiesel production from Pongamia pinnata oil using methanol and 2-propanol. Journal of Cleaner Production, 255, pp. 1203-1213. https://doi.org/10.1016/j.jclepro.2020.120313
  16. Laskar, I. B., Gupta, R., Chatterjee, S., Vanlalveni, C., and Rokhum, L. (2020). Taming waste: Waste Mangifera indica peel as a sustainable catalyst for biodiesel production at room temperature. Renewable Energy, 161, pp. 207–220. https://doi.org/10.1016/j.renene.2020.07.061
  17. Mostafa Marzouk, N., Abo El Naga, A. O., Younis, S. A., Shaban, S. A., El Torgoman, A. M., and El Kady, F. Y. (2021). Process optimization of biodiesel production via esterification of oleic acid using sulfonated hierarchical mesoporous ZSM-5 as an efficient heterogeneous catalyst. Journal of Environmental Chemical Engineering, 9(2), pp.105-125. https://doi.org/10.1016/j.jece.2021.105035
  18. Nadeem, F., Bhatti, I. A., Ashar, A., Yousaf, M., Iqbal, M., Mohsin, M., Nisar, J., Tamam, N., and Alwadai, N. (2021). Eco-benign biodiesel production from waste cooking oil using eggshell derived MM-CaO catalyst and condition optimization using RSM approach. Arabian Journal of Chemistry, 14(8), pp. 103-113. https://doi.org/10.1016/j.arabjc.2021.103263
  19. Naveenkumar, R., and Baskar, G. (2021). Process optimization, green chemistry balance and technoeconomic analysis of biodiesel production from castor oil using heterogeneous nanocatalyst. Bioresource Technology, 320, pp. 124-137. https://doi.org/10.1016/j.biortech.2020.124347
  20. Nitsos, C. K., Lazaridis, P. A., Mach-Aigner, A., Matis, K. A., and Triantafyllidis, K. S. (2019). Enhancing lignocellulosic biomass hydrolysis by hydrothermal pretreatment, extraction of surface lignin, wet milling and production of cellulolytic enzymes. ChemSusChem, 12(6), pp. 1179–1195. https://doi.org/10.1002/cssc.201802597.
  21. Nwosu-obieogu, K. (2021). Artificial Neural Network Predictive Modelling of luffa cylindrica Seed Oil Antioxidant Yield. Gazi University Journal of Science Part A: Engineering and Innovation, 8(4), pp. 494-504.
  22. Nwosu-Obieogu, K., Dzarma, G. W., Ugwuodo, C. B., Chiemenem, L. I., and Akatobi, K. N. (2022). Luffa seed oil extraction: response surface and neuro-fuzzy modelling performance evaluation and optimization. Process Integration and Optimization for Sustainability, pp. 1-14.
  23. Nwosu-Obieogu, K., and Umunna, M. (2021).Rubber seed oil epoxidation: experimental study and soft computational prediction. Annals of the Faculty of Engineering Hunedoara-International Journal of Engineering, (4), pp. 12-25.
  24. Oke, E. O., Nwosu-Obieogu, K., Okolo, B. I., Adeyi, O., Omotoso, A. O., and Ude, C. U. (2021). Hevea brasiliensis oil epoxidation: hybrid genetic algorithm–neural fuzzy–Box–Behnken (GA–ANFIS–BB) modelling with sensitivity and uncertainty analyses. Multiscale and Multidisciplinary Modeling, Experiments and Design, 4, pp. 131-144.
  25. Onukwuli, O. D., Joseph, E., Nonso, U. C. and Nwosu-obieogu., K. (2022). Improving heterogeneous catalysis for biodiesel production process. Cleaner Chemical Engineering, 3, 100038.
  26. Onukwuli, O. D., Nwosu-obieogu, K., Joseph, E. and Nonso, U. C. (2023). Soft computing prediction of linseed oil transesterification process via clay-doped barium chloride catalyst. Process Integration and Optimization for Sustainability, pp. 1-26. https://doi.org/10.1016/j.fuel.2020.119586.
  27. Qasemi, Z., Jafari, D., Jafari, K., and Esmaeili, H. (2021). Heterogeneous aluminum oxide/calcium oxide catalyzed transesterification of mespilus germanica triglyceride for biodiesel production. Environmental Progress and Sustainable Energy, 4(2), pp. 1–12. https://doi.org/10.1002/ep.13738.
  28. Rahman, M. M., Hassan, T., Rabbi, M. F., Shakil, M. F., and Khan, M. A. (2021). Transesterification of vegetable oil with ethanol using different catalysts. In AIP Conference Proceedings 2324(1). AIP Publishing.
  29. Sabzevar, A., Ghahramaninezhad, M., and Niknam Shahrak, M. (2021). Enhanced biodiesel production from oleic acid using TiO2-decorated magnetic ZIF-8 nanocomposite catalyst and its utilization for used frying oil conversion to valuable product. Fuel, 288, 119586.
  30. Sahu, O. (2021). Characterisation and utilization of heterogeneous catalyst from waste rice-straw for biodiesel conversion. Fuel, 287, pp. 119-243. https://doi.org/10.1016/j.fuel.2020.119543
  31. Sai, A., Niju, S., Meera, K.M. and Anantharaman, N. (2019). Optimization and modeling of biodiesel production using fluorite as a heterogeneous catalyst. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 41(15), pp. 1862–1878. https://doi.org/10.1080/15567036.2018.1549165
  32. Shobhana-Gnanaserkhar, Asikin-Mijan, N., AbdulKareem-Alsultan, G., Sivasangar-Seenivasagam, Izham, S. M., and Taufiq-Yap, Y. H. (2020). Biodiesel production via simultaneous esterification and transesterification of chicken fat oil by mesoporous sulfated Ce supported activated carbon. Biomass and Bioenergy, 141, pp. 105-122. https://doi.org/10.1016/j.biombioe.2020.105714
  33. Suresh, T., Sivarajasekar, N., and Balasubramani, K. (2021). Enhanced ultrasonic assisted biodiesel production from meat industry waste (pig tallow) using green copper oxide nanocatalyst: Comparison of response surface and neural network modelling. Renewable Energy, 164, pp. 897–907. https://doi.org/10.1016/j.renene.2020.09.112
  34. Tamoradi, T., Kiasat, A. R., Veisi, H., Nobakht, V., Besharati, Z., and Karmakar, B. (2021). MgO doped magnetic graphene derivative as a competent heterogeneous catalyst producing biofuels via transesterification: Process optimization through Response Surface Methodology (RSM). Journal of Environmental Chemical Engineering, 9(5), pp. 106-129. https://doi.org/10.1016/j.jece.2021.106009
  35. Ude, C. N., Onukwuli, O. D., Okoye, C. N., Anisiji, O. E., Atuanya, C. U., Menkiti, C., Onukwuli, O. D., Okoye, C. N., Anisiji, O. E., and Atuanya, C. U. (2017). Performance evaluation of cottonseed oil methyl esters produced using CaO and prediction with an artificial neural network. 7269(4),pp.42-56. https://doi.org/10.1080/17597269.2017.1345355
  36. Wang, A., Quan, W., Zhang, H., Li, H., and Yang, S. (2021). Heterogeneous ZnO-containing catalysts for efficient biodiesel production. RSC Advances, 11(33), pp. 20465–20478. https://doi.org/10.1039/d1ra03158a
  37. Yahya, S., Wahab, S. K. M., and Harun, F. W. (2020). Optimization of biodiesel production from waste cooking oil using Fe-Montmorillonite K10 by response surface methodology. Renewable Energy, 157, pp. 164-172.
  38. Zhang, Y., Niu, S., Han, K., Li, Y., and Lu, C. (2021). Synthesis of the SrO–CaO–Al2O3 trimetallic oxide catalyst for transesterification to produce biodiesel. Renewable Energy, 168, pp. 981–990. https://doi.org/10.1016/j.renene.2020.12.132