Main Article Content

Abstract

Lack of techno-economic framework for optimal gasification and the identification of critical parameters for optimal operations is one of the major challenges restricting the gasification of crop residues. This study aims to develop an optimal techno-economic framework for the gasification of crop residues from clustered small/medium-scale farms. The developed model was applied to a case study in Adiembra, a farming community for a 10-kW gasifier engine system. Eight scenarios of individual feedstock and their blends were considered. The results revealed specific fuel consumption ranging from 1.79 – 3.53 kg/kWh. The economic analysis showed marginal profitability except for rice husk and straw which are not profitable. At the current grid electricity price, the minimum level of subsidies required to ensure the financial viability of the feedstocks is within the range of 30 – 70 % of the investment cost based on the various feedstock scenarios considered. The study revealed individual feedstocks with the best technical and economic prospects for optimal gasification to be cocoa pod husk, maize stalk and husk, maize cobs, rice straw and rice husk in the order of best to worst. The use of feedstock blends generally improved the overall syngas characteristics and financial viability. A total number of farms ranging between 107 – 532 are required to be clustered within a radius of 0.74 – 2.12 km with a cluster radius greater than 3.91 km not being financially viable. The fraction of each feedstock type in the blends were optimised with corresponding increase in syngas generation within the range of 9 – 35 % and decrease in the required number of farms within the range of 30 – 57 %. The outcome of the study demonstrates that sustainable gasification of crop residues for minigrid electricity generation requires co-gasification of various residue types, valorisation of by-products and increase in the current feed-in-tariff rate in Ghana.

Keywords

Techno-economic Gasification Farms Optimisation Crop Residues

Article Details

References

  1. Akkache, S., Hernández, A. B., Teixeira, G., Gelix, F., Roche, N., Ferrasse, J. H. (2016). Co-gasifcation of wastewater sludge and different feedstock: feasibility study. Biomass Bioenergy, 89 (1), pp. 201-209. https://doi.org/10.1016/j.biombioe.2016.03.003
  2. Akolgo, G. A., Kemausuor, F., Essandoh, E. O., Atta-Darkwa, T., Bart-Plange, A., Kyei-Baffour, N., Maia, C. M. B. F. (2019). Review of biomass gasification technologies: guidelines for the Ghanaian situation. International Journal of Engineering Science and Application, 3 (4), pp.152-158.
  3. All Power Labs (2021). The global leader in small-scale gasification. Available at: https://www.allpowerlabs.com/wp-content/uploads/2014/05/APL_2014catalog_5_ 1314small.pdf [Accessed 15 December 2021].
  4. Anenberg, S. C., Henze, D. K., Lacey, F., Irfan, A., Kinney, P., Kleiman, G., Pillarisetti, A. (2017). Air pollution-related health and climate benefits of clean cookstove programs in Mozambique. Environ. Res. Lett., 12 (1), pp. 1-12. https://doi.org/10.1088/1748-9326/aa5557.
  5. Arranz-Piera, P., Bellot, O., Gavaldà, O., Kemausuor, F., Velo, E. (2016). Trigeneration based on biomass - specific field case: agricultural residues from smallholder farms in Ghana. Energy Procedia, 93 (1), pp. 146-153. https://doi.org/10.1016/j.egypro.2016.07.163.
  6. Arranz-Piera, P., Kemausuor, F., Addo, A., Velo, E. (2017). Electricity generation prospects from clustered smallholder and irrigated rice farms in Ghana. Energy, 121 (1), pp. 246-255. https://doi.org/10.1016/j.energy.2016.12.101
  7. Arranz-Piera, P., Kemausuor, F., Darkwah, L., Edjekumhene, I., Cortes, J., Velo, E. (2018). Mini grid electricity service based on local agricultural residues: feasibility study in rural Ghana. Energy. 153 (1), pp. 443 – 454. https://doi.org/10.1016/j.energy.2018.04.058
  8. Atiya, A. E., Morad, M. M., Tawfik, M. A., Wasfy, K. I. (2017). Fabricating and performance evaluating of an experimental prototype of downdraft biomass gasifier. Agricultural Engineering, 44 (2), pp. 727–740. https://doi.org/10.21608/ZJAR.2017.53905.
  9. Basu, P. (2018). Gasification theory, In: P. Basu (ed.), Biomass Gasification, Pyrolysis and Torrefaction (Third Edition), Cambridge: Academic Press. pp. 211-262 https://doi.org/10.1016/B978-0-12-812992-0.00007-8.
  10. Belonio, A. T. (2005). Rice husk gas stove handbook. Appropriate Technology Center. Department of Agricultural Engineering and Environmental Management College of Agriculture Central Philippine University Iloilo City, Philippines. Available at: bioenergylists.org/stovesdoc/Belonio/Beloniogasifier.pdf [Accessed 15 January 2021].
  11. Belonio, A. T., Regalado, M. J. C., Castillo, P. R. (2018). Development of an appropriate rice-based biomass gasifier as source of power for farm use. Open Access Library Journal, 5 (12), pp. 1-16. https://doi.org/10.4236/oalib.1105054
  12. Biagini, E., Barontini, F., Tognotti, L. (2015). Gasification of agricultural residues in a demonstrative plant: Corn cobs. Bioresource Technology, 173 (1), pp. 110–116.
  13. Buragohain, B., Mahanta, P., Moholkar, V. S. (2010). Biomass gasification for decentralized power generation: The Indian perspective. Renew. Sustain. Energy Rev., 14 (1), pp. 73–92.
  14. Cao Y., Bai, Y., Du, J. (2022). Co-gasification of rice husk and woody biomass blends in a CFB system: A modelling approach. Renewable Energy, 188 (1), pp. 849-858. https://doi.org/10.1016/j.renene.2022.01.083
  15. Commeh, M.K. Kemausuor, F. Badger, E.N. Osei, I. (2019). Experimental study of ferrocement downdraft gasifier engine system using different biomass feedstocks in Ghana. Sustainable Energy Technologies and Assessments, 31 (1), pp. 124 –131. https://doi.org/10.101 6/j.seta.2018.12.016
  16. Copa, J. R., Tuna, C. E., Silveira, J. L., Bolo, R. A. M., Brito, P., Silva, V., Cardoso, J., Eusébio, D. (2020). Techno-economic assessment of the use of syngas generated from biomass to feed an internal combustion engine. Energies, 13 (12), 3097. doi:10.3390/en13123097.
  17. Dalmiş, I. S., Kayişoğlu, B., Tuğ, S., Aktaş, T., Durgut, M. R., Durgut, F. T. (2018). A prototype downdraft gasifier design with mechanical stirrer for rice straw gasification and comparative performance evaluation for two different airflow paths, Tarım Bilimleri Dergisi. Journal of Agricultural Sciences, 24 (3), pp. 329-339. https://doi.org/10.15832/ankutbd.456649.
  18. Di Carlo, A., Savuto, E., Foscolo, P. U., Papa, A. A., Tacconi, A., Del Zotto, L., Aydin, B., Bocci, E. (2022). Preliminary results of biomass gasification obtained at pilot scale with an innovative 100 kWth dual bubbling fluidized bed gasifier. Energies, 15 (12), pp. 4369. https://doi.org/10.3390/en15124369
  19. Edmunds, C. W., Reyes, M. E. A., André, N., Hamilton, C., Park, S., Fasina, O., Adhikari, S., Kelley, S. S., Tumuluru, J. S., Rials, T. G., Labbé, N. (2018). Blended Feedstocks for Thermochemical Conversion: Biomass Characterization and Bio-Oil Production from Switchgrass-Pine Residues Blends. Front. Energy Res., 6 (1), pp. 1-16, doi: 10.3389/fenrg.2018.00079
  20. El-Sattar, H. A., Kamel, S., Jurado, F. (2020). Fixed bed gasification of corn stover biomass fuel: Egypt as a case study. Biofuels, Bioproducts and Biorefining, 14 (1), pp. 7–19.
  21. Energy Commission Ghana (2016). A baseline study of renewable energy technologies in Ghana. Available at: http://energy com.gov.gh/rett/documents-downloads?down load=173: baseline-study-of-renewable-energ y-technologies [Accessed 13 February 2019].
  22. Energy Commission Ghana (2018). National energy statistics 2008 – 2017. Available at: http://energycom.gov.gh/files/ ENEER GY_STATISTICS_2017_Revised.pdf [Accessed 15 June, 2019].
  23. Energy Commission Ghana (2020). National energy statistics 2000 – 2019. Available at: http://energycom.gov.gh/file s/2020 %2 0ENEGY% 20STATISTICS-revised.pdf. [Accessed 20 March 2021].
  24. Energy Commission Ghana. (2021) Energy outlook for Ghana. (2021). Available at: http://www.energycom.gov.gh/planning/datacenter/energyoutlookforghana?Download=120:e nergy [Accessed 21 November, 2021].
  25. Gunasekaran, A. P., Chockalingam, M. P., Padmavathy, S. R., Santhappan, J. S. (2021). Numerical and experimental investigation on the thermochemical gasification potential of Cocoa pod husk (Theobroma Cacoa) in an open-core gasifier. Clean Technologies and Environmental Policy, 23 (5), pp. 1603–1615. https://doi.org/10.1007/s10098-021-02051-w
  26. Hoque ME, Rashid F, Aziz M. (2021). Gasification and power generation characteristics of rice husk, sawdust, and coconut shell using a fixed-bed downdraft gasifier. Sustainability, 13 (4), pp. 1-18. https://doi.org/10.3390/su13042027
  27. Inayat, M. S., Shaharin, A. K., Jundika, C., Shahbaz, M. (2016). Effect of blending ratio on co-gasification performance of tropical plant-based biomass. 4th IET Clean Energy and Technology Conference (CEAT 2016), Kuala Lumpur, Malaysia, pp. 1-7. https://doi.org/10.1049/cp.2016.1331.
  28. Indrawan, N., Simkins, B., Kumar, A., Huhnke, R. L. (2020). Economics of distributed power generation via gasification of biomass and municipal solid waste. Energies, 13 (14), pp. 3703 https://doi.org/10.3390/en13143703.
  29. Indrawan, N., Thapa, S., Bhoi, P. R., Huhnke, R. L., Kumar, A. (2017). Engine power generation and emission performance of syngas generated, from low-density biomass. Energy Conversion and Management, 148 (1), pp.593–603. https://doi.org/10.1016/j.enconman.2017.05.066
  30. Kemausuor F., Addo, A., Ofori, E., Darkwah, L., Bolwig, S., Nygaard, I. (2015). Assessment of technical potential and selected sustainability impacts of second-generation bioenergy in Ghana. PhD Thesis, Kwame Nkrumah University of Science and Technology, Kumasi.
  31. Kirsanovs, V., Blumberga, D., Veidenbergs, I., Rochas, C., Vigants, E., Vigants, G. (2017). Experimental investigation of downdraft gasifier at various conditions. Energy Procedia, 128 (1), pp. 332–338. https://doi.org/10.1016/j.egypro.2017.08.321
  32. Kontor S. (2013). Potential of biomass gasification and combustion technology for small-and medium-scale applications in Ghana. Available at: https://core.ac.uk/download/pdf/38098807.pdf [Accessed 13 February, 2021].
  33. Lan, K., Ou, L., Park, S., Kelley, S. S., English, B. C., Yu, T. E., Larson, J., Yao, Y. (2021). Techno-Economic Analysis of decentralized preprocessing systems for fast pyrolysis biorefineries with blended feedstocks in the southeastern United States. Renew. Sustain. Energy Rev., 143 (1), 110881. https://doi.org/10.1016/j.rser.2021.110881
  34. Lubwama, M. (2010). Technical Assessment of the functional and operational performance of a fixed bed biomass gasifier using agricultural residues, Master of Science Thesis, School of Industrial Engineering and Management Division of Heat and Power Technology, Stockholm.
  35. Ma, Z., Ye, J., Zhao, C., Zhang, Q. (2015). Gasification of rice husk in a downdraft gasifier: the effect of equivalence ratio on the gasification performance, properties, and utilization analysis of by-products of char and tar. BioResources, 10 (2), pp. 2888-2902.
  36. Makwana, J. P., Joshi, A. K., Athawale, G., Singh, D., Mohanty, P. (2015). Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal. Bioresource Technology, 178 (1), pp. 45-52. doi: http://dx.doi.org/10.1016/j.biortech.2014.09.111
  37. Martínez, L. V., Rubiano, J. E., Figueredo, M., Gómez, M. F. (2020). Experimental study on the performance of gasification of corncobs in a downdraft fixed bed gasifier at various conditions. Renewable Energy, 148 (1), pp. 1216 –1226. https://doi.org/10.1016/j.renene.2019.10.034
  38. Murugan, P. C., Sekhar, S. J. (2017). Species – Transport CFD model for the gasification of rice husk (Oryza Sativa) using downdraft gasifier. Computers and Electronics in Agriculture, 139 (1), pp.33-40.
  39. Osei I., Addo A., Kemausuor F. (2021). Crop residues utilization for renewable energy generation in ghana: review of feedstocks assessment approach, conversion technologies and challenges. Ghana Journal of Technology, 5 (2), pp. 29– 42.
  40. Osei, I., Akowuah, J. O., Kemausuor, F. (2016). Techno-economic models for optimised utilisation of Jatropha Curcas Linnaeus under an out-grower farming scheme in Ghana. Resources, 5 (4), pp. 1-38.
  41. Owen, M, Ripken, R. (2017). Bioenergy for Sustainable Energy Access in Africa, Technology Country Case Study Report (incorporating Country Scoping Reports) Submitted to DFID, Available at: https://assets.publishing.service.gov.uk/media/5ab4d98fe5274a1aa593342f/T echnology_Country _Case_ Study_Report__for_circulation.pdf [Accessed 4 June 2019].
  42. Pereira, E. G., da Silva, J. N., de Oliveira, J. L., Machado, C. S. (2012). Sustainable energy: a review of gasification technologies. Renewable and Sustainable Energy Reviews, 16 (7), pp. 4753-4762. https://doi.org/10.1016/j.rser.2012.04.023
  43. Porcu, A., Sollai, S., Marotto, D., Mureddu, M., Ferrara, F., Pettinau, A. (2019). Techno-economic analysis of a small-scale biomass-to-energy bfb gasification-based system. Energies 12 (3), pp. 494. https://doi.org/10.3390/en12030494
  44. Prasad, L., Subbarao, P. M. V., Subrahmanyam, J. P. (2014). Pyrolysis and gasification 417 characteristics of Pongamia residue (de-oiled cake) using thermogravimetry and downdraft gasifier. Appl. Therm. Eng., 63 (1), pp. 379–386. https://doi.org/10.1016/j.applthermaleng.2013.11.005
  45. Public Utility Regulatory Commission Ghana (PURC) Ghana (2016). Publication of feed-in-tariffs for electricity generated from renewable energy. Available at: https://www.purc.com.gh/attachment/302019-20210309110342.pdf [Accessed 12 June 2021].
  46. Rahimi, M. J., Hamedi, M. H., Amidpour, M., Livani, E. (2020). Technoeconomic evaluation of a gasification plant: modelling, experiment and software development. Waste and Biomass Valorization, 11 (2), pp. 6815–6840. https://doi.org/10.1007/s12649-019-00925-1
  47. Ramamurthi, P. V., Fernandes, M. C., Nielsen, P. S. and Pedro N. C. (2016), Utilisation of rice residues for decentralised electricity generation in Ghana: An economic analysis. Energy, 111 (18), pp. 620-629.
  48. Salisu, J., Muhammad, M. B., Atta, A. Y., Mukhtar, B., Yusuf, N., Waziri, S. M., Bugaje, I. M. (2019). Theoretical and experimental studies of rice husk gasification using air as gasifying agent in a downdraft gasifier. Nigerian Research Journal of Engineering and Environmental Sciences, 4 (2), pp. 645-657.
  49. Sansaniwal, S. K., Pal, K., Rosen, M. A., Tyagi, S. K. (2017). Recent advances in the development of biomass gasification technology: A comprehensive review. Renewable and Sustainable Energy Reviews, 72 (1), pp. 363–384. https://doi.org/10.1016/j.rser.2017.01.038.
  50. Suhartono, S. Prasetyo, B. D., Azizah I. N. (2016). Synthetic gas (syngas) production in downdraft corncob gasifier and its application as fuel using conventional domestic (LPG) stove. ARPN Journal of Engineering and Applied Sciences, 11 (8), pp. 5238–5243.
  51. Susanto, H., Suria, T., Pranolo, S. H. (2018). Economic analysis of biomass gasification for generating electricity in rural areas in Indonesia. IOP Conf. Ser. Mater. Sci. Eng. 334, 012012. https://doi.org/10.1088/1757-899X/334/1/012012
  52. Susastriawan, A. A. P, Saptoadi H., Purnomo (2019). Comparison of the gasification performance in the downdraft fixed-bed gasifier fed by different feedstocks: Rice husk, sawdust, and their mixture. Sustainable Energy Technologies and Assessments, 34 (1), pp. 27–34. https://doi.org/10.1016/j.seta.2019.04.008
  53. Umar, H. A., Sulaiman, S. A., Said, M. A., Gungor, A., Ahmad, R. K., Inayat, M. (2021). Syngas production from gasification and co-gasification of oil palm trunk and frond using a down-draft gasifier. Int J Energy Res., 45 (5), pp. 8103–8115. https://doi.org/10.1002/er.6345
  54. Velo E. (2011). Overview of small-scale biomass to electricity technologies. Proceedings of the International Workshop Small Scale Biomass Systems for Electricity Generation and Decentralised Energy Services, 15-16 November 2010, Universitat Politècnica de Catalunya, Barcelona. ISBN 978-8461571635.
  55. Worall, M., Darkwa, J., Adjei, E., Calautit, J., Kemausuor, F., Ahiekpor, J., Nelson N. (2021). A small-scale gasifier-generator fueled by cocoa pod husk for rural communities in Ghana. Energy Proceedings, 14 (1), pp. 1–4.
  56. Yassin, L., Lettieri, P., Simons, S. J. R., Germanà, A. (2009). Techno-economic performance of energy-from-waste fluidized bed combustion and gasification processes in the UK context. Chemical Engineering Journal, 146 (3), pp. 315–327.